When are linear differentiation-invariant spaces differential?

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Differential Operators on Nonreductive Homogeneous Spaces

A systematic exposition is given of the theory of invariant differential operators on a not necessarily reductive homogeneous space. This exposition is modelled on Helgason’s treatment of the general reductive case and the special nonreductive case of the space of horocycles. As a final application the differential operators on (not a priori reductive) isotropic pseudo-Riemannian spaces are cha...

متن کامل

Shift-Invariant Spaces and Linear Operator Equations

In this paper we investigate the structure of finitely generated shift-invariant spaces and solvability of linear operator equations. Fourier transforms and semi-convolutions are used to characterize shift-invariant spaces. Criteria are provided for solvability of linear operator equations, including linear partial difference equations and discrete convolution equations. The results are then ap...

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Partial Differentiation on Normed Linear Spaces Rn

Let i, n be elements of N. The functor proj(i, n) yielding a function from Rn into R is defined by: (Def. 1) For every element x of Rn holds (proj(i, n))(x) = x(i). Next we state two propositions: (1) dom proj(1, 1) = R1 and rng proj(1, 1) = R and for every element x of R holds (proj(1, 1))(〈x〉) = x and (proj(1, 1))−1(x) = 〈x〉. (2)(i) (proj(1, 1))−1 is a function from R into R1, (ii) (proj(1, 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2007

ISSN: 0024-3795

DOI: 10.1016/j.laa.2006.06.031